
Quartz:
Audio / Visual Sync for
Procedural & Interactive
Systems.

I’m Max Hayes.

Audio Engine Programmer
At Epic Games focused on medium-to-low level audio
systems for Unreal Engine. One of which is the Quartz
Subsystem.

Musician
Initially studied Music Production & Engineering and
Electronic Production & Design at Berklee College of Music
(guitar principal) before transferring to…

DigiPen
Where I completed a BS in Computer Science & Digital
Audio (graduated in 2019).

Agenda

What is this place?
Overview of Game & Audio Engines

Goal: I want to do stuff perfectly on beat
Ability to play sounds on strongly-timed boundaries in sync
with gameplay / visuals

Problem: I seem to not be able to do stuff perfectly
on the beat
Multithreading, arbitrary grids, latency.

Solution: How do I do it on the beat
How Quartz approaches the problem space.
(Not a Quartz tutorial)

Outcomes:
What is unlocked once you have such a solution?

What is a Game Engine?
(Especially the sound part)

Audio

Networking

Graphics

Serialization

Physics

Animation

Game Engine:
A collection of real-time
software systems working in
concert to create a dynamic,
user-driven experience.

Check for Input /
Player action

Jump? Pause? Quit?

Update Actors /
Systems

Animation, Physics,
Game Logic, send
Audio Commands

Draw To Screen
Send vertex data to

the graphics card

Game Loop

Source Generation

Voice
Management

Profiling

Spatialization

Mixing

Dynamic
Music

Audio Engines:
A constellation of features
Sound Designers use to
create the dynamic sonic
experience for the player or
audience.

Generate Source
Audio

Start/stop sounds, run
decoders, synths,
apply source-level

effects

Mix and Submix
Submix graph,

analyzers, submix
effects, etc.

Mixdown to final
buffer

Stage the data to be
sent to the OS

Audio Engine
Update

Games are multi-threaded:

Audio (basically) always has its own thread.
The operating system periodically asks our audio engine for
the next chunk of audio samples.

Our logic runs on the game thread.
This is where things get updated, we decide to play a sound
(or not), and the next frame gets drawn to the screen.

This is a slight over-simplification.
Unreal also has an Audio Thread and an Audio Render
Thread (in addition to the Game Thread and OS audio call-
back).

Check for Input /
Player action

Update Actors /
Systems

Draw To Screen

Game Loop

Generate Source
Audio

Mix and Submix

Mixdown to final
buffer

Audio Engine
Update

Games are multi-threaded

PlaySound()

So lets do some work in a
Game Engine.

Lets make an actor make sound.

TODO: Show example audio BPs
& Audio Components

As a sound designer, I want to be able to...

As a sound designer, I want to be able to...

Play sounds on strongly-timed
boundaries.

Could be dynamic music, machine
guns, breathing/heartbeat systems,
etc.

Trigger gameplay logic and VFX in
sync with audio.

Let other disciplines tap into my audio
system (audio-driven gameplay).

Why wouldn’t this work by
default?

I can do some math, keep track of delta times,
decide when to play my sounds...

Naïve implementation (99bpm)

Why wouldn’t this work by
default?

…Not quite my tempo

A/B with 16th notes (99bpm)

A/B with 32nd notes (99bpm)

Obstacle Number 1:
The game thread only ticks at a limited rate.

(30fps, 60fps, 100fps, etc.)

1/30 2/30 3/30 4/30 5/30 6/30 7/30 8/30

At 30 fps we only get to update every 33.3 ms

9/30

Game Loop

1/30 2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

At 30 fps we only get to update every 33.3 ms

9/30

1/16th note @ 120bpm 1/16th note @ 120bpm

 Audio Render Thread

As a sound designer, I want to be able to...

Play sounds on strongly-timed
boundaries.

Could be dynamic music, machine
guns, breathing/heartbeat systems,
etc.

Trigger gameplay logic and VFX in
sync with audio.

Let other disciplines tap into my audio
system (audio-driven gameplay).

Not be bound to the game’s
frame rate.

I need to be able to trigger sounds
between game frames, and be
unaffected by fps dips/drops.

Audio is rendered in blocks of
samples we call buffers.

If we could sort that out it
should just work right?

Audio is very high-res right??

Basically 48,000fps… right???

…Audio is not rendered in samplesBut once we solve that it should be easy…

Obstacle Number 2:
Audio is rendered in buffers.

The audio engine only processes pending requests right
before each buffer is rendered.

New sounds will only play at the beginning of the next buffer.

(buffer size ‘N’ = 1024, 2048, 4096, etc.)

1/30 2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

9/30

1/16th note @ 120bpm 1/16th note @ 120bpm

At N=2048 & SR=44.1kHz the audio engine “ticks”
every 46.44ms

 Audio Render Thread

1/30

Audio Engine Update

2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

9/30

1/16th note @ 120bpm 1/16th note @ 120bpm

Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update

At N=2048 & SR=44.1kHz the audio engine “ticks”
every 46.44ms

1/30

Audio Engine Update

2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

9/30

1/16th note @ 120bpm 1/16th note @ 120bpm

Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update

At N=2048 & SR=44.1kHz the audio engine “ticks”
every 46.44ms

Actual Onset
Actual Onset

Expected Onset
Expected Onset

1/30

Audio Engine Update

2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

9/30

1/16th note @ 120bpm 1/16th note @ 120bpm

Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update

At N=2048 & SR=44.1kHz the audio engine “ticks”
every 46.44ms

Error / Latency
Error / Latency

Actual Onset
Actual Onset

Expected Onset
Expected Onset

This error is VARIABLE

A/B with 16th notes (99bpm)

This arbitrary and
inconsistent quantization
is (part of) what Quartz

solves.

Quartz is a scheduler:

Create and control clocks.

These clocks live on the Audio Engine
(Audio Render Thread) and can be
controlled from the game thread.

Schedule commands like
“PlayQuantized()”

Quartz calculates how many audio
frames until the command should
execute.

Game visuals in sync with audio.

Game logic can piggyback on this
scheduling worrying about things like
BPM changes, voice limits, etc. to let
audio trigger VFX & Gameplay.

Blueprint: Quartz “Hello World”

1/30

Audio Engine Update

2/30 3/30 4/30 5/30 6/30 7/30 8/30

1/16th note @ 120bpm

9/30

1/16th note @ 120bpm

Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update Audio Engine Update

How PlayQuantized() works:
@ N=2048 & SR=44.1kHz

Actual Onset

Expected Onset

PlayQuantized()

1/16th note @ 120bpm

Frames Left:
9,339

Frames Left:
7,291

Frames Left:
5,243

Frames Left:
3,195

Frames Left:
1,147

[Start sound w/ 1,147-
sample delay]

Quartz Metronome Events

Quartz Notify

Quartz Notify

Cube
changes on
beat 3 of
each bar

Now the Audio Engine can
notify Game Logic of

musical events.
(Let’s get the VFX artists to do something cool)

Quartz “Get Beat Progress
Percent*”

*naming things is hard

Obstacle Number 3:

At large buffer sizes, the audio engine’s update rate becomes
slower than the game’s frame rate.

i.e. The game wants a smooth ramp but is getting the same
value multiple frames in a row. (S&H)

1/30

Audio Engine Update

2/30 3/30 4/30 5/30 6/30 7/30 8/30 9/30

Audio Engine Update Audio Engine Update Audio Engine Update

At N=4096 & SR=44.1kHz the audio engine “ticks”
every 92.88ms

1/4 note @ 120bpm 1/4 note @ 120bpm

Obstacle Number 4:
Light travels faster than sound.

Human error tolerance reflects this.

(Things we see cause things we hear)

In summary:

A bit about games, game engines, and game audio.
Talked about the mechanisms and undesired quantization
between the Game Thread and Audio Render Thread.

How to schedule from game logic to audio renderer.
Stepped through how Quartz avoids these issues and allows to
schedule ahead with single-sample accuracy.

How to let audio state drive gameplay and VFX.
Covered some pitfalls with audio engine state driving gameplay
and VFX. And how Quartz approaches these issues as well.

● Fortnite Infinite Downtime Music System

● Deadmau5 prototyping

● Mix Universe

● BlasterBeat

Quartz in the wild

Thank you!
Questions?

@MacksHazeAudio

