
THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

1

INTRODUCTION

In this article we discuss how to use a multithreaded

and multicore design methods to design digital audio

systems. Digital audio systems operate on streams of

data; this enables the system designer to split the design

in parts, and reason about the delay and bandwidth of

each part.

Multicore and multithreading are efficient methods to

design real-time systems in general, but audio systems

in particular. Multithreaded and multicore design views

a system as a collection of many tasks that operate

independently, and that communicate with each other

when required. Breaking the system design down from

large monolithic blocks of code into much more

manageable tasks greatly simplifies system design and

speeds product development. As a result, real-time

properties of the system as a whole are more easily

understood, and the designer only has to worry about

the fidelity of the implementation of each task. For

example, “Is the feedback algorithm implemented

correctly?”.

We first briefly summarise the notions of digital audio,

multicore, and multithreading, before showing how to

effectively use multicore and multithreading to design

the buffering schemes for digital audio systems. We use

several digital audio systems to illustrate the design

method, including Asynchronous USB-Audio 2, and

AVB over Ethernet.

DIGITAL AUDIO

Digital audio has taken over from analog audio in many

consumer markets for two reasons. First, most audio

sources are digital. Whether delivered in lossy

compressed form (MP3) or in uncompressed formats

(CD), digital standards have taken over from the

traditional analog standards such as cassettes and tapes.

Second, digital audio is easier to deal with than analog

audio. Data can be transferred lossless over existing

standards, such as TCP/IP or USB, and the hardware

design of that part does not need any “black magic” to

keep the noise floor down. As far as the digital path is

concerned, the noise floor is constant and immune

from, for example, TDMA noise that mobile phones

may cause. In particular, there is little need for

expensive cables with specific analogue characteristics.

A digital audio system operates on streams of samples.

Each sample represents the amplitude of one or more

audio channels at a point in time, with the time between

samples being governed by the sample rate. CD

standards have two channels (left and right) and use a

sample rate of 44,100 Hz. Common audio standards use

DESIGNING MULTITHREADED AND MULTICORE AUDIO
SYSTEMS

HENK L MULLER

XMOS Ltd, Bristol, UK

henk@xmos.com

http://www.xmos.com/

Digital audio represents data as bit patterns. As such they are easily transmitted and stored either for

archiving purposes (on hard disk), or for temporary purposes ("buffering" audio data). Buffering data has

the undesired effect of delaying audio, and should hence be avoided whereever possible. In this article we

present a design tactic for digital audio systems that avoids buffering and that relies on the predictable

nature of underlying hardware to deliver data just-in-time. We show how to use this tactic, how to compute

minimum buffer sizes required, and how to scale the design to larger systems.

THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

2

2, 6 (5.1) and 8 (7.1) channels, and samples rates of

44.1 kHz, 48 kHz, or a multiple. We use 48 kHz as a

running example, but this is by no means the only

standard that can be supported.

MULTICORE AND MULTITHREADING

In a multithreaded design approach, a system is

expressed as a collection of concurrent tasks. Using

concurrent tasks rather than using a single monolithic

description has several advantages:

• Multiple tasks are a good way to support

separation of concerns, one of the most

important aspects of software engineering.

Separation of concerns means that different tasks of

the design can be individually designed,

implemented, tested and verified. Once the

interaction between the tasks has been specified,

teams or individuals can each get on with their

own task.

• Concurrent tasks provide an easy framework to

specify what a system should be doing. For

example, a digital audio system will play audio

samples that are received over a network

interface. In other words, the system should

concurrently perform two tasks: receive data

from the network interface and play samples on

its audio interface. Expressing these two tasks as

a single sequential task is confusing.

A system that is expressed as a collection of concurrent

tasks can be implemented by a collection of threads in

one or more multithreaded cores. We assume that

threads are scheduled at instruction level, such as is the

case on an XMOS XCore processor, because that

enables concurrent tasks to operate in real-time. Note

that this is different from multithreading on, for

example, Linux where threads are scheduled on a uni-

processor with context switching. This may make those

threads appear concurrent to a human being, but not to

a collection of real-time devices.

Concurrent tasks are logically designed to communicate

by message passing, and when two tasks are

implemented by two threads, they communicate by

sending data and control over channels. Inside a core,

channel communication is performed by the core itself,

and when threads are located on separate cores, channel

communication is performed through switches. This is

visualised in Figures 1 and 2, which shows a system

comprising three cores in two packages.

Multithreaded design has been used by embedded

system designers for decades. To implement an

embedded system, a system designer used to employ a

multitude of micro-controllers. For example, inside a

music player one may have found three

microcontrollers controlling flash, the DAC, and an

MP3 decoder chip.

We argue that modern day multithreaded environments

offer a replacement for this design strategy. A single

multithreaded chip can replace a number of MCUs and

provide an integrated communication model between

tasks. Instead of having to implement bespoke

communication between tasks on separate MCUs, the

system is implemented as a set of threads that

communicate over channels.

Using a multithreaded design approach enables the

designer to reuse parts of their design in a

straightforward manner. In traditional software

engineering, functions and modules are combined to

perform complex tasks, but this method does not

necessarily work in a real-time environment because

executing two functions in sequence may break the

real-time requirement of either.

In an ideal multithreaded environment composition of

real-time tasks is trivial, as it is just a case of adding a

thread (maybe a core) for every new real-time task. In

reality, the designer will have constraints on the number

of cores (for example because of a limitation on the

BOM cost) and will hence have to make a decision

which tasks to compose as concurrent threads, and

which tasks to integrate in a single thread as a

collection of functions.

MULTITHREADED DIGITAL AUDIO

In the remaining sections we look at how to design a

digital audio system using a multithreaded design

approach. In particular we will look at how to avoid

buffering, and how to design a low latency system.

A digital audio system is easily split into multiple

threads, for example, a network protocol stack thread, a

clock recovery thread, an audio delivery thread, and

optionally, threads for DSP, device upgrade, driver

authentication etc. The network protocol stack may be

as complex as an Ethernet TCP/IP stack and comprise

multiple concurrent tasks, or as simple as an S/PDIF

receiver.

THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

3

We assume that the threads in the system communicate

by sending data samples over communication-channels.

Whether the threads execute on a single core or on a

multicore system is not important in this design

method, multicore just adds scalability to the design.

We assume that the computational requirements for

each thread can be established statically and are not

data-dependent, which is normally true for

uncompressed audio.

We will focus our attention on two key parts of the

design: buffering between threads (and their impact on

performance) and embedding the design in a complete

system, requiring us to perform clock recovery. Once

the tasks have been split and the buffering scheme has

been designed, implementing the inside of each thread

follows normal software engineering principles, and is

as hard or easy as one would expect.

We pick out buffering and clock recovery because they

have a qualitative impact on the user experience

(facilitating stable low latency audio) and are easy to

express in a multithreaded programming environment.

BUFFERING: THE CORE OF THE SYSTEM

Within a digital solution data samples are not

necessarily transported at the time that they are to be

delivered. This requires digital audio to be buffered.

The design challenge is to establish the right amount of

buffering. In an analogue system, buffering is not an

issue: the signal is delivered on time. In a digital system

designed on top of a non-real-time O/S, programmers

usually stick in a reasonably large buffer (say 250 or

1000 samples) in order to cope with uncertainties in

scheduling policies. However, large buffers are costly

in terms of memory, in terms of adding latency and in

Figure 1: Diagram showing cores, threads,

channels and switches

Figure 2: Physical incarnation of Figure 1

THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

4

terms of proving that they are large enough to

guarantee click-free delivery.

As an example on how to design with little buffering,

consider a USB-2 speaker with a 48 kHz sample rate.

The USB layer will transport a burst of six samples in

every 125 us window. There is no guarantee at which

time in the 125 us window the six samples will be

delivered, hence a buffer of at least 12 samples is

required in order to guarantee that samples can be

streamed out to the speaker in real-time; assuming that

all samples are dealt with without delay.

Multithreaded design provides a good framework to

both informally and formally reason about buffering

and avoids unnecessarily large buffers. In order to

illustrate the reasoning we augment the above USB

speaker with an ambient noise correction system. This

system will comprise the following threads:

• A thread that receives USB samples over the

network.

• A series of, say, 10 threads that filter the stream

of samples; each with a different set of

coefficients.

• A thread that delivers a filtered output sample to

the stereo codec using I2S.

• A thread that reads samples from a codec

connected to a microphone sampling ambient

noise.

• A thread that subsamples the ambient noise to

an 8 kHz sample rate.

• A thread that establishes the spectral

characteristics of the ambient noise.

• A thread that changes the filter coefficients

based on the computed spectral characteristics.

All threads will operate on some multiple of the 48 kHz

base period. For example, each of the filtering threads

will filter exactly one sample every 48 kHz period; the

delivery thread will deliver a sample every period. Each

of the threads also has a defined window over which it

operates, and a defined method by which this window

is advanced. For example, if our filter thread is

implemented using a Biquad, then it will operate on a

window of three samples that is advanced by one

sample every period. The spectral thread may operate

on a 256 sample window (to perform an FFT) that is

advanced by 64 samples every 64 samples.

One can now establish all parts of the system that

operate on the same period and compose these together

in synchronous parts. No buffers are required inside

those synchronous parts, although if threads are to

operate in a pipeline, single buffers are required.

Between the various synchronous parts buffers are

required. In our example, we end up with three parts:

1. The part that receives samples from USB. This

part filters and delivers samples at a rate of 48

kHz.

2. The part that samples ambient noise. This part

samples at 48 kHz and delivers samples with a

rate of 8 kHz.

3. The part that establishes the spectral

characteristics and changes the filter settings.

Figure 1: The threads grouped together based on their frequency

THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

5

This part receives data at 8 Khz and changes the

settings at 125 Hz

These three parts are shown graphically in Figure 3.

The first part that receives samples from the USB

buffer needs to buffer 250 us worth of samples, plus

one sample: 250 us to cover two USB microframes, and

one sample overlap. Given a 48 Khz sample rate this

translates to a 13 sample buffer. A few extra samples

buffer can be added to cope with medium term jitter in

the clock recovery algorithm. The part that delivers

needs to buffer one stereo sample. Operating the 10

filter threads as a pipeline requires 11 buffers. All

threads in this part operate at 48 kHz. The second part

that samples ambient noise needs to store one sample

on the input side and six samples for subsampling,

hence there is a seven sample delay at 48 kHz, or 145

us. The third part that establishes the spectral

characteristics needs to store 256 samples, at an 8 kHz

sample rate.

No other buffers are required hence the delay between

ambient noise and filter correction is 256 samples at 8

kHz and 145 us for the sub sampling, or just over 32

ms. The delay in the audio delivery is 25 sample times,

or just over 500 us. Note that these are minimum buffer

sizes for the algorithm and thread partitioning that we

have chosen to use; if this latency is unacceptable, a

different algorithm or different thread partition has to

be chosen. For example, we can choose to glue together

threads that implement the DSP, and reduce the buffer

count between the filter elements.

There is often a temptation to design the threads to

operate on blocks of data instead of single samples, but

that will increase the overall latency experienced,

increase the memory requirements, and increase

complexity. This should be considered only if there is a

clear benefit, such as an increased throughput.

Note that this number of buffers is independent of the

number of cores used to implement the system.

Splitting the design over cores will add some marginal

extra latency for inter-core communication; hundreds of

microseconds.

CLOCKING DIGITAL AUDIO

A big difference between digital and analog audio is

that digital audio is based on this underlying sample

rate and digital audio requires a clock signal to be

distributed to all parts of the system. Although

components can all use different sample rates (for

example, some parts of the system may use 48 kHz and

some other parts may use 96 kHz with a sample rate

conversion in between), all components should agree

on the length of a second, and therefore agree on a

basis to measure frequencies. The measurements above

simply counted integral numbers of samples and

assumes that all threads run at an identical rate. In fact,

all threads can execute data-driven as long as the three

threads that interface with the outside world operate

synchronously.

All threads inside the system are agnostic to clock

frequency, and it does not matter if multiple cores in

the system use different crystals, as long as they operate

on whole samples. However, at the edges of the system,

the true clock frequency is important and we must

ensure that the edges operate synchronously.

In a multithreaded environment, we will set a thread

aside to explicitly measure the true clock sample rate

that the signal wishes to use, to implement the clock

recovery algorithm, and to measure the local clock

versus the global clock and agree with a master clock

on the clock offset. The latter enables the master to

deliver samples synchronously to multiple devices (eg,

multiple AVB speakers) and synchronously with other

media such as a TV screen.

The clock may be measured implicitly using the

underlying bit-rate of interconnects such as S/PDIF or

ADAT. Measuring the number of bits per second on

either of those networks will give a measure for the

master clock. The clock may be measured explicitly by

using protocols designed for this purpose such as PTP

over Ethernet. The latter also have facilities to measure

latency and mitigate against latency.

The clock recovery thread itself is a control loop that

estimates the clock frequency and that adjusts the clock

based on the error observed. In its simplest form, the

error is used as a metric to adjust the frequency, but

filters can be used to reduce jitter. This software thread

implements what would have been traditionally been

performed by a PLL, but in software and hence it can

be adjusted to the environment cheaply. If a hardware

master clock is required, an analogue PLL is required

to generate a local low-jitter audio master audio clock.

CONCLUSIONS

A multithreaded development method enables digital

audio systems to be developed using a divide-and-

THE INS AND OUTS OF AUDIO – AES 24
th

UK CONFERENCE 2011

6

conquer approach, where a problem is split into a set of

concurrent tasks that are each executed in a separate

thread on a multithreaded core.

Like many real time systems, digital audio lends itself

to a multithreaded design method because digital audio

systems obviously consist of a group of tasks that work

on data and also require those tasks to execute

concurrently.

