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INTRODUCTION 

In this article we discuss how to use a multithreaded 

and multicore design methods to design digital audio 

systems. Digital audio systems operate on streams of 

data; this enables the system designer to split the design 

in parts, and reason about the delay and bandwidth of 

each part. 

Multicore and multithreading are efficient methods to 

design real-time systems in general, but audio systems 

in particular. Multithreaded and multicore design views 

a system as a collection of many tasks that operate 

independently, and that communicate with each other 

when required. Breaking the system design down from 

large monolithic blocks of code into much more 

manageable tasks greatly simplifies system design and 

speeds product development. As a result, real-time 

properties of the system as a whole are more easily 

understood, and the designer only has to worry about 

the fidelity of the implementation of each task. For 

example, “Is the feedback algorithm implemented 

correctly?”. 

We first briefly summarise the notions of digital audio, 

multicore, and multithreading, before showing how to 

effectively use multicore and multithreading to design 

the buffering schemes for digital audio systems. We use 

several digital audio systems to illustrate the design 

method, including Asynchronous USB-Audio 2, and 

AVB over Ethernet. 

DIGITAL AUDIO 

Digital audio has taken over from analog audio in many 

consumer markets for two reasons. First, most audio 

sources are digital. Whether delivered in lossy 

compressed form (MP3) or in uncompressed formats 

(CD), digital standards have taken over from the 

traditional analog standards such as cassettes and tapes. 

Second, digital audio is easier to deal with than analog 

audio. Data can be transferred lossless over existing 

standards, such as TCP/IP or USB, and the hardware 

design of that part does not need any “black magic” to 

keep the noise floor down. As far as the digital path is 

concerned, the noise floor is constant and immune 

from, for example, TDMA noise that mobile phones 

may cause. In particular, there is little need for 

expensive cables with specific analogue characteristics. 

A digital audio system operates on streams of samples. 

Each sample represents the amplitude of one or more 

audio channels at a point in time, with the time between 

samples being governed by the sample rate. CD 

standards have two channels (left and right) and use a 

sample rate of 44,100 Hz. Common audio standards use 
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2, 6 (5.1) and 8 (7.1) channels, and samples rates of 

44.1 kHz, 48 kHz, or a multiple. We use 48 kHz as a 

running example, but this is by no means the only 

standard that can be supported. 

MULTICORE AND MULTITHREADING 

In a multithreaded design approach, a system is 

expressed as a collection of concurrent tasks. Using 

concurrent tasks rather than using a single monolithic 

description has several advantages: 

• Multiple tasks are a good way to support 

separation of concerns, one of the most 

important aspects of software engineering.  

Separation of concerns means that different tasks of 

the design can be individually designed, 

implemented, tested and verified. Once the 

interaction between the tasks has been specified, 

teams or individuals can each get on with their 

own task. 

• Concurrent tasks provide an easy framework to 

specify what a system should be doing. For 

example, a digital audio system will play audio 

samples that are received over a network 

interface. In other words, the system should 

concurrently perform two tasks: receive data 

from the network interface and play samples on 

its audio interface. Expressing these two tasks as 

a single sequential task is confusing. 

A system that is expressed as a collection of concurrent 

tasks can be implemented by a collection of threads in 

one or more multithreaded cores. We assume that 

threads are scheduled at instruction level, such as is the 

case on an XMOS XCore processor, because that 

enables concurrent tasks to operate in real-time. Note 

that this is different from multithreading on, for 

example, Linux where threads are scheduled on a uni-

processor with context switching. This may make those 

threads appear concurrent to a human being, but not to 

a collection of real-time devices. 

Concurrent tasks are logically designed to communicate 

by message passing, and when two tasks are 

implemented by two threads, they communicate by 

sending data and control over channels. Inside a core, 

channel communication is performed by the core itself, 

and when threads are located on separate cores, channel 

communication is performed through switches. This is 

visualised in Figures 1 and 2, which shows a system 

comprising three cores in two packages. 

Multithreaded design has been used by embedded 

system designers for decades. To implement an 

embedded system, a system designer used to employ a 

multitude of micro-controllers. For example, inside a 

music player one may have found three 

microcontrollers controlling flash, the DAC, and an 

MP3 decoder chip. 

We argue that modern day multithreaded environments 

offer a replacement for this design strategy. A single 

multithreaded chip can replace a number of MCUs and 

provide an integrated communication model between 

tasks. Instead of having to implement bespoke 

communication between tasks on separate MCUs, the 

system is implemented as a set of threads that 

communicate over channels. 

Using a multithreaded design approach enables the 

designer to reuse parts of their design in a 

straightforward manner. In traditional software 

engineering, functions and modules are combined to 

perform complex tasks, but this method does not 

necessarily work in a real-time environment because 

executing two functions in sequence may break the 

real-time requirement of either. 

In an ideal multithreaded environment composition of 

real-time tasks is trivial, as it is just a case of adding a 

thread (maybe a core) for every new real-time task. In 

reality, the designer will have constraints on the number 

of cores (for example because of a limitation on the 

BOM cost) and will hence have to make a decision 

which tasks to compose as concurrent threads, and 

which tasks to integrate in a single thread as a 

collection of functions. 

MULTITHREADED DIGITAL AUDIO 

In the remaining sections we look at how to design a 

digital audio system using a multithreaded design 

approach. In particular we will look at how to avoid 

buffering, and how to design a low latency system. 

A digital audio system is easily split into multiple 

threads, for example, a network protocol stack thread, a 

clock recovery thread, an audio delivery thread, and 

optionally, threads for DSP, device upgrade, driver 

authentication etc. The network protocol stack may be 

as complex as an Ethernet TCP/IP stack and comprise 

multiple concurrent tasks, or as simple as an S/PDIF 

receiver. 
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We assume that the threads in the system communicate 

by sending data samples over communication-channels. 

Whether the threads execute on a single core or on a 

multicore system is not important in this design 

method, multicore just adds scalability to the design. 

We assume that the computational requirements for 

each thread can be established statically and are not 

data-dependent, which is normally true for 

uncompressed audio. 

We will focus our attention on two key parts of the 

design: buffering between threads (and their impact on 

performance) and embedding the design in a complete 

system, requiring us to perform clock recovery. Once 

the tasks have been split and the buffering scheme has 

been designed, implementing the inside of each thread 

follows normal software engineering principles, and is 

as hard or easy as one would expect. 

We pick out buffering and clock recovery because they 

have a qualitative impact on the user experience 

(facilitating stable low latency audio) and are easy to 

express in a multithreaded programming environment. 

BUFFERING: THE CORE OF THE SYSTEM 

Within a digital solution data samples are not 

necessarily transported at the time that they are to be 

delivered. This requires digital audio to be buffered. 

The design challenge is to establish the right amount of 

buffering. In an analogue system, buffering is not an 

issue: the signal is delivered on time. In a digital system 

designed on top of a non-real-time O/S, programmers 

usually stick in a reasonably large buffer (say 250 or 

1000 samples) in order to cope with uncertainties in 

scheduling policies. However, large buffers are costly 

in terms of memory, in terms of adding latency and in 

Figure 1: Diagram showing cores, threads, 

channels and switches 

 

Figure 2: Physical incarnation of Figure 1 

 



THE INS AND OUTS OF AUDIO – AES 24
th 

UK CONFERENCE 2011 
 

4 

terms of proving that they are large enough to 

guarantee click-free delivery. 

As an example on how to design with little buffering, 

consider a USB-2 speaker with a 48 kHz sample rate. 

The USB layer will transport a burst of six samples in 

every 125 us window. There is no guarantee at which 

time in the 125 us window the six samples will be 

delivered, hence a buffer of at least 12 samples is 

required in order to guarantee that samples can be 

streamed out to the speaker in real-time; assuming that 

all samples are dealt with without delay. 

Multithreaded design provides a good framework to 

both informally and formally reason about buffering 

and avoids unnecessarily large buffers. In order to 

illustrate the reasoning we augment the above USB 

speaker with an ambient noise correction system. This 

system will comprise the following threads: 

• A thread that receives USB samples over the 

network. 

• A series of, say, 10 threads that filter the stream 

of samples; each with a different set of 

coefficients. 

• A thread that delivers a filtered output sample to 

the stereo codec using I2S. 

• A thread that reads samples from a codec 

connected to a microphone sampling ambient 

noise. 

• A thread that subsamples the ambient noise to 

an 8 kHz sample rate. 

• A thread that establishes the spectral 

characteristics of the ambient noise. 

• A thread that changes the filter coefficients 

based on the computed spectral characteristics. 

All threads will operate on some multiple of the 48 kHz 

base period. For example, each of the filtering threads 

will filter exactly one sample every 48 kHz period; the 

delivery thread will deliver a sample every period. Each 

of the threads also has a defined window over which it 

operates, and a defined method by which this window 

is advanced. For example, if our filter thread is 

implemented using a Biquad, then it will operate on a 

window of three samples that is advanced by one 

sample every period. The spectral thread may operate 

on a 256 sample window (to perform an FFT) that is 

advanced by 64 samples every 64 samples. 

One can now establish all parts of the system that 

operate on the same period and compose these together 

in synchronous parts. No buffers are required inside 

those synchronous parts, although if threads are to 

operate in a pipeline, single buffers are required. 

Between the various synchronous parts buffers are 

required. In our example, we end up with three parts: 

1. The part that receives samples from USB. This 

part filters and delivers samples at a rate of 48 

kHz. 

2. The part that samples ambient noise. This part 

samples at 48 kHz and delivers samples with a 

rate of 8 kHz. 

3. The part that establishes the spectral 

characteristics and changes the filter settings. 

Figure 1: The threads grouped together based on their frequency 
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This part receives data at 8 Khz and changes the 

settings at 125 Hz 

These three parts are shown graphically in Figure 3.  

The first part that receives samples from the USB 

buffer needs to buffer 250 us worth of samples, plus 

one sample: 250 us to cover two USB microframes, and 

one sample overlap. Given a 48 Khz sample rate this 

translates to a 13 sample buffer. A few extra samples 

buffer can be added to cope with medium term jitter in 

the clock recovery algorithm. The part that delivers 

needs to buffer one stereo sample. Operating the 10 

filter threads as a pipeline requires 11 buffers. All 

threads in this part operate at 48 kHz. The second part 

that samples ambient noise needs to store one sample 

on the input side and six samples for subsampling, 

hence there is a seven sample delay at 48 kHz, or 145 

us. The third part that establishes the spectral 

characteristics needs to store 256 samples, at an 8 kHz 

sample rate. 

No other buffers are required hence the delay between 

ambient noise and filter correction is 256 samples at 8 

kHz and 145 us for the sub sampling, or just over 32 

ms. The delay in the audio delivery is 25 sample times, 

or just over 500 us. Note that these are minimum buffer 

sizes for the algorithm and thread partitioning that we 

have chosen to use; if this latency is unacceptable, a 

different algorithm or different thread partition has to 

be chosen. For example, we can choose to glue together 

threads that implement the DSP, and reduce the buffer 

count between the filter elements. 

There is often a temptation to design the threads to 

operate on blocks of data instead of single samples, but 

that will increase the overall latency experienced, 

increase the memory requirements, and increase 

complexity. This should be considered only if there is a 

clear benefit, such as an increased throughput. 

Note that this number of buffers is independent of the 

number of cores used to implement the system. 

Splitting the design over cores will add some marginal 

extra latency for inter-core communication; hundreds of 

microseconds. 

CLOCKING DIGITAL AUDIO 

A big difference between digital and analog audio is 

that digital audio is based on this underlying sample 

rate and digital audio requires a clock signal to be 

distributed to all parts of the system. Although 

components can all use different sample rates (for 

example, some parts of the system may use 48 kHz and 

some other parts may use 96 kHz with a sample rate 

conversion in between), all components should agree 

on the length of a second, and therefore agree on a 

basis to measure frequencies. The measurements above 

simply counted integral numbers of samples and 

assumes that all threads run at an identical rate. In fact, 

all threads can execute data-driven as long as the three 

threads that interface with the outside world operate 

synchronously. 

All threads inside the system are agnostic to clock 

frequency, and it does not matter if multiple cores in 

the system use different crystals, as long as they operate 

on whole samples. However, at the edges of the system, 

the true clock frequency is important and we must 

ensure that the edges operate synchronously. 

In a multithreaded environment, we will set a thread 

aside to explicitly measure the true clock sample rate 

that the signal wishes to use, to implement the clock 

recovery algorithm, and to measure the local clock 

versus the global clock and agree with a master clock 

on the clock offset. The latter enables the master to 

deliver samples synchronously to multiple devices (eg, 

multiple AVB speakers) and synchronously with other 

media such as a TV screen. 

The clock may be measured implicitly using the 

underlying bit-rate of interconnects such as S/PDIF or 

ADAT. Measuring the number of bits per second on 

either of those networks will give a measure for the 

master clock. The clock may be measured explicitly by 

using protocols designed for this purpose such as PTP 

over Ethernet. The latter also have facilities to measure 

latency and mitigate against latency. 

The clock recovery thread itself is a control loop that 

estimates the clock frequency and that adjusts the clock 

based on the error observed. In its simplest form, the 

error is used as a metric to adjust the frequency, but 

filters can be used to reduce jitter. This software thread 

implements what would have been traditionally been 

performed by a PLL, but in software and hence it can 

be adjusted to the environment cheaply. If a hardware 

master clock is required, an analogue PLL is required 

to generate a local low-jitter audio master audio clock. 

CONCLUSIONS 

A multithreaded development method enables digital 

audio systems to be developed using a divide-and-
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conquer approach, where a problem is split into a set of 

concurrent tasks that are each executed in a separate 

thread on a multithreaded core. 

Like many real time systems, digital audio lends itself 

to a multithreaded design method because digital audio 

systems obviously consist of a group of tasks that work 

on data and also require those tasks to execute 

concurrently. 


